Seminar: Bayesian Rule Mining

Symbolbild zum Artikel. Der Link öffnet das Bild in einer großen Anzeige.

Seminar description

The field of knowledge discovery has focused on the extraction of rules created from the frequent association symbols. With the recent introduction of the Bayesian rule mining algorithms, the focus is shifting from measuring relevance based on rule frequency and moving towards the increasing belief concept. Regardless of the rule relevance metric of choice, rule mining poses the secondary challenge of finding rules’ premise and conclusion symbol-sets.  In this seminar, we will investigate how to transform some of the techniques used to find frequent symbol sets, into finding symbol sets that have the increasing belief property.  Specifically, we will explore the use of genetic algorithms to find rules that have increasing belief.

Learning Objectives

  • Gain an overview of rule mining frameworks, tools and techniques.
  • Understand concepts of data processing, generating process distributions and relationships.
  • Analyse data relationships.
  • Apply Mining frameworks, and compare frequent rule mining methodologies to Bayesian rule mining methods.
  • Create a Bayesian data miner that uses genetic algorithms.

Course Data

Language English
Presence time 4 SWS
Useful knowledge Python, data analytics
Period Summer semester 2019
StudOn < Link follows >
Med. Eng. Seminar Title Advance Context Recognition (ACR)
First Meeting Seminar introduction/Vorbesprechung
on 24. Apr 2019, 17:00-18:30 at Henkestr. 91, Haus 7, 1. OG, R 373.


Up-to-date literature recommendations are provided during the lectures.


  • Final project presentation, demonstrator and final report.


Dr. Luis I. Lopera G.

  • Job title: Researcher
  • Address:
    Henkestraße 91, Haus 7, 1. OG
    91052 Erlangen
  • Phone number: +49 9131 85-23605
  • Email:

Friedrich-Alexander-Universität Erlangen-Nürnberg