

A C T I V I T Y - B a S E D C O M P U T I N G

APRIL�JUNE 2008 PERVASIVE computing� 23

mized for implementing multimodal,
distributed activity and context recog-
nition systems running on Posix oper-
ating systems. Like conventional rapid-
prototyping tools, the CRN Toolbox
contains a collection of ready-to-use
algorithms (signal processing, pattern
classi�cation, and so on). Unlike clas-
sic event detection in homogeneous sen-
sor networks�for example, DSWare
(Data Service Middleware)4�it sup-
ports complex activity detection from
heterogeneous sensors. Its implementa-
tion is particularly optimized for mo-
bile devices. This includes the ability to
execute algorithms, whether in �oat-
ing-point or fixed-point arithmetic,
without recoding. Moreover, with its
mature functionality, the CRN Tool-
box isn�t likely to suffer from limited
user acceptance as the Context toolkit
framework did.5

The CRN Toolbox contains dedi-
cated building blocks for interfacing
a broad range of sensor nodes. It also
supports synchronization, merging, and
splitting of data streams. In contrast to
the PCOM (Pervasive Computing Com-
ponent System) model,6 which focuses
on contract-based spontaneous con�gu-
ration, the Toolbox relies on a known
network topology. Users can �exibly
distribute applications among devices
(including servers) by simply starting

the con�gured Toolbox runtime on the
appropriate system. Another important
feature is the ability to interface conven-
tional simulation environments such
as WEKA (Waikato Environment for
Knowledge Analysis, www.cs.waikato.
ac.nz/~ml). The functionality is acces-
sible through a graphical configura-
tion editor, which enables constructing
complex applications by connecting and
con�guring a set of task icons corre-
sponding to different processing steps.

The concepts the CRN Toolbox
uses�graphical programming, data-
driven computation, parameterizable
libraries, and distribution�are them-
selves not new. But the CRN Toolbox
has optimally adapted and integrated
these concepts for rapid, ef�cient im-
plementation of context recognition
systems.

Toolbox concept
The concept of the CRN Toolbox stems
from the observation that most activity
recognition systems rely on a relatively
small set of algorithms. These include
sliding-window signal partitioning,
standard time and frequency domain
features, classi�ers, and time series or
event-based modeling algorithms.

The key differences between systems
involve sensor choice, parameteriza-
tion of algorithms (for instance, slid-
ing-window size), and data �ow. The
data �ow can be as simple as feeding
1D sensor data to a mean �lter and a
classi�er. This could be a con�guration

for recognizing sitting and standing
from an upper-leg accelerometer, for
example. It can be as complex as fusing
data from tens of heterogeneous sen-
sors, working with different sampling
frequencies, different feature computa-
tions, and even different classi�ers. In
such complex systems, different plat-
forms often handle different sensor
subgroups�for example, certain mo-
bile devices and servers with stationary
sensors. The implementation must han-
dle the distributed computation, collect
the data, and synchronize the different
data streams.

The CRN Toolbox simpli�es the im-
plementation of even complex, distrib-
uted context recognition systems to the
following three steps:

Compile the Toolbox for all plat-
forms on which it needs to run.
Select and con�gure the algorithms
and data �ow for each platform.
Start the Toolbox on each platform
with the dedicated con�guration.

If it�s necessary to analyze algorithms
that aren�t presently available in the
CRN Toolbox, users can easily inter-
face rapid-prototyping tools running
on a remote server.

Figure 1 shows an overview of the
CRN Toolbox concept. The step-by-
step configuration guide presents a
simple example for recognizing kitchen
activities from the user�s on-body
sensors.

�

�

�

Parameterizable
components

CodeInterfaces

Configuration
editor

Configuration

CRN Toolbox
runtime

External
tools

(b) (d)(c)

(a)

Sensor
devices

Output devices

SS
S

OO

Figure 1. Concept of the Context
Recognition Network (CRN) Toolbox:
(a) repository of parameterizable
software components, including I/O
device readers and writers, �ltering
and classi�cation algorithms, and
components for splitting, merging,
and synchronizing data streams;
(b) graphical editor for specifying data
�ow and con�guring components;
(c) the CRN Toolbox runtime
environment for online execution of
the con�gured software components;
and (d) arbitrary external tools�for
example, live data-stream plotting
or another CRN Toolbox (local or
remote)�communicating with the
Toolbox runtime.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 25, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

24 PERVASIVE computing� www.computer.org/pervasive

ACTIVITY-BaSED COMPUTING

Reusable components
The basic building blocks provided by
the CRN Toolbox are the reusable, pa-
rameterizable components. Conceptu-
ally, the components are active objects
that operate on data streams. We refer
to them as tasks. They encapsulate al-
gorithms and data, and they each have
an individual thread of execution. In
essence, tasks run in parallel, waiting
for data packets to arrive at their in-
port. They then process the packet�s
payload according to their algorithm
and parameter settings, and provide the
modi�ed data packet at their out-port.
Depending on the con�gured data �ow,
subsequent tasks will receive the packet
for further processing.

The Toolbox provides reader and
writer tasks for interfacing with in-
put and output devices, processing
algorithms for data �ltering and clas-
si�cation, and components for split-
ting, merging, and synchronizing data
streams. Table 1 summarizes currently
available tasks. Detailed task descrip-
tions are available as help pages. The
list is constantly growing as increas-

ingly more users contribute to the proj-
ect. Numbers in parentheses represent
the number of tasks in each category.

Every task has an individual number
of parameters that control its opera-
tion. For example, the k-nearest neigh-
bor (KNN) classi�er task uses the k,
a �le name with training data, and an
optional step-size parameter.

The encapsulation in active objects
and the parameterization proved es-
sential for reusing the actual code. So,
for most applications, the fact that the
Toolbox is implemented in C++ is insig-
ni�cant, yet those applications bene�t
from the ef�cient runtime.

The motor: Runtime 	
environment and �ow control
The Toolbox runtime provides the vi-
tal environment for tasks to operate. It
handles dynamic creation and con�gu-
ration of tasks as well as con�guration
of the data �ow.

For parameter handling, the Toolbox
uses the JavaScript Object Notation
(JSON) format, with an object loader in
the �get instance by name� style.7 Thus,

users can con�gure the Toolbox at run-
time through text-based con�guration
�les that de�ne settings for tasks and the
data �ow that the application needs.

Directed connections from out-ports
to in-ports specify the data �ow between
tasks. Each data packet transmitted
along these connections contains data
entities belonging to one time instant.
A packet�s payload is organized as a
vector of values from an abstract data
type. Moreover, the packets contain a
time stamp and sequence number. For
combining multiple streams, the Tool-
box provides merger tasks. Mergers
combine the payloads of packets from
separate in-ports and synchronize data
streams with different sampling rates.

We used pointer references to pass
data packets along the internal connec-
tions through the task network. Packets
are cloned only if more than one receiver
connects to the same out-port. This im-
plementation of the runtime core ensures
high packet-processing performance.
Moreover, we preserved processing per-
formance by providing operations to the
task developer that, like the += operator,

TABLE 1
Summary of tasks currently provided by the CRN Toolbox.

Task category (no.
of tasks) Task implementations

Generic reader (4) Reading from �le, keyboard, TCP socket, or serial device (including Bluetooth), using a decoder plug-in

Speci�c reader (18) ADS* (heart rate), ARSB (walking sensing), BTnode, Hexamite, ID-10 RFID, Lukotronic, NMEA (GPS),
MyHeart protocol, SkyeTek M1-mini RFID, Tmote force-sensing resistors, Tmote RFID, Tmote magnetic
distance, TMSI �ber protocol, Suunto ANT protocol, Web interface input, Xsens MT9/MTi, Xsens Xbus, Wii
Remote

Channel reordering (4) ChannelSelect, SelectiveSplitterTask, SimpleMerger, SyncMerger

Filtering (4) FilterTask, TransitionDetector, VecLen, Einsnorm

Filter plug-ins (16) Average signal energy, band energy ratio, bandwidth, center of gravity, entropy, FFT, �uctuation, peak,
max, mean, median, slope, scale, spectral roll-off frequency, threshold, variance

Classi�cation tasks (9) Distance2Position, Hexamite2D, HMMs, KNN, PCFG parser, RangeChecker, SequenceDetector, SimpleHexSensClassi�cation

Miscellaneous (4) Synchronizer, Heartbeat, Valve, Nothing

Writer (9) TCP server, TCP client, serial port, �le, console, MyHeart protocol, graph display, image display, Nirvana
(silent sink)

Encoder plug-ins (9) ARFFEncoder (WEKA), BinaryEncoder, CmdEncoder, IntLinesEncoder, JSONEncoder, PlottingEncoder, TextLabelEncoder,
TimestampedLinesEncoder, SuperPacketEncoder

Decoder plug-ins (4) ASCIIDecoder, FloatLinesDecoder, IntLinesDecoder, StringLinesDecoder
* ADS: Advanced Digital Strap (Philips heart rate belt); ARFF: Attribute-Relation File Format (WEKA); ARSB: activity recognition sensor board; FFT: fast Fourier transform;
HMM: hidden Markov model; KNN: k-nearest neighbor; PCFG: probabilistic context-free grammars; WEKA: Waikato Environment for Knowledge Analysis

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 25, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

APRIL�JUNE 2008 PERVASIVE computing� 25

inherently modify data objects instead
of allocating new objects.

Synchronizing independent 	
data streams
Synchronization of the data streams
from different sensors is a major issue in
multimodal activity recognition. When
using several independent sensors, it�s
important to synchronize their data
streams to a common starting point.

A feasible concept for this type of
synchronization is aligning streams on
events recorded by all sensors simulta-
neously�for example, a user jumping
up with a set of on-body acceleration
sensors. We implemented this concept
in the Synchronizer and SyncMerger tasks.
Figure 2 depicts the solution for the ex-
ample of two Xsens MT9 acceleration
sensors. The jump inserted a character-
istically high acceleration amplitude.
The Synchronizer tasks detect the peaks
caused by these events and adjust data
packet time stamps accordingly. The
SyncMerger combines the data streams by
aligning the time stamps. The Synchro-
nizer tasks are manually activated�for
instance, through a KeyboardReader�to
limit the alignment phases to controlled
time frames. Our initial analysis of the
method showed that an alignment of
0.5 seconds and better was possible.

Readers: Sensor 	
hardware encapsulation
The CRN Toolbox implements sensor in-
terfaces as tasks without in-ports. These
reader tasks instantiate new data pack-
ets for data samples acquired from sen-
sors (or other sources) and provide these
packets on their out-port. Our architec-
ture supports various reader implemen-
tations that can capture different sensors
or other sources, such as web pages, ap-

plication outputs, and data �les.
For activity annotation, we imple-

mented a keyboard reader to perform
online labeling of data. This reader
proved very helpful, because it enables
storing the labels with the raw data for
later evaluation.

Writers: Communication 	
for distributed processing
Writer tasks are the key to distributed
execution and use of external tools.
They forward data received at their in-
port to external interfaces (such as �les,
displays, or network connections). For
network connections, we use TCPWriter
and TCPReader tasks to communicate via
TCP/IP sockets. The CRN Toolbox
transmits data packets on the channel
in a serialized form. The Toolbox ob-
tains the serialization from an encoder
plug-in in the TCPWriter task. Similarly, the
TCPReader uses a decoder plug-in for dese-
rialization. Thus, two CRN Toolboxes
running independently�for example,
on different hosts�can collaborate us-

ing the writer-reader communication.
Using this mechanism, the Toolbox

can link to arbitrary programs based
on compatible interfaces. Currently,
such interfaces exist for Matlab and
Weka, both of which support data vi-
sualization and pattern recognition in
experiments and demonstrators.

Easy con�guration
The Toolbox�s rapid-prototyping capa-
bilities increased our need for an easy,
quick con�guration editor. Figure 2
shows the graphical con�guration edi-
tor. Users can drag tasks from a library
into the workspace and connect them
to other tasks with just a few mouse
clicks. The Java-based editor produces
con�guration �les for the Toolbox. (See
the �How to Cook: A Step-by-Step
Guide� sidebar for an example of how
easy it is to build activity recognition
applications with the CRN Toolbox.)

Case studies
The vitality of a framework such as

(b)

(a)

0 500 1,000
Time (ms)

Sensor 1
Sensor 2

1,500 2,000 2,500 3,000

Ac
ce

le
ra

tio
n

Synchronization event

Figure 2. Example using two Xsens
MT9 acceleration sensors: (a) CRN
Toolbox graphical con�guration
editor with synchronization setup;
(b) data alignment achieved at an
event detected by the Synchronizers.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 25, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

26 PERVASIVE computing� www.computer.org/pervasive

ACTIVITY-BaSED COMPUTING

the CRN Toolbox stems from its con-
tinual development and deployment in
various projects. The showcase of ap-
plications in industry projects, student
classes, and demonstrators (see tables
2 through 4) highlights the CRN Tool-

box�s maturity and widespread use.
These projects have successfully de-
ployed the Toolbox on different plat-
forms, including

Linux running on arm32, i386, and �

amd64 systems;
MacOSX running on i386s and
iPhones; and
Cygwin running on i386s.

Here, we depict three case studies

�

�

T he CRN Toolbox makes building activity recognition ap-
plications easy. For example, implementing your own

kitchen activity recognition takes only �ve steps, including classi-
�er training. Moreover, you don�t have to write additional code.

The ingredients are a motion sensor mounted on a glove, a
wearable computer or �kitchen PC,� and the CRN Toolbox. In
this guide, we use the MT9 sensor from Xsens. Typical activi-
ties include stirring, whisking, cutting bread, slicing onions, and
wiping with a cloth.

 1. Using the graphical con�guration editor, create a con�gu-
ration for recording training data (see �gure A1). Begin by
adding the MT9Reader to acquire data from the MT9 sensor
at 100 Hz, and provide all nine channels on its out-port.
Use SelectiveSplitterTask to choose the channels of interest, and
then send them to MeanFilter and VarFilter (variance). Set the
sliding window size to 100 (1 second). Use SimpleMerger to
combine the two data streams again, and add the output
of a KeyboardReader task. This task annotates the recording by
keystrokes. Finally, add LoggerTask to write the resultant data
streams into a �le.

 2. Select an annotation key for training each activity. Connect

the sensor and start the Toolbox with the created con�gu-
ration. Then, wearing the sensor glove, perform each activ-
ity for about 30 seconds. At the beginning of each activity,
press its selected annotation key.

 3. Review the recorded training data in the log �le and reduce
it to about 100 samples per activity class. The number in
the last column of the log �le indicates the class label.

 4. Modify the �rst con�guration to include the classi�er and
the output task (see �gure A2). Remove KeyboardReader, be-
cause from now on the classi�er will do the annotation.
Specify the �le name of the training data in the properties
of the KNN task. Attach the DisplayImage task to the KNN and
specify the picture that should display on the screen for
each recognized activity category.

 5. Start the Toolbox with the new con�guration. Now you can
work in the kitchen as you wish and let the Toolbox track
your activities or, even better, feed the results into a con-
text-aware cookbook (see �gure A3). Bon appØtit!

To improve the system, you could add more sensing modali-
ties (such as location), select useful features, or use more sophis-
ticated recognition algorithms.

How to Cook: A Step-by-Step Guide

(1) (2) (3)

Figure A. Con�gurations for kitchen activity recognition: (1) recording of training data; (2) online classi�cation and
display of results; and (3) example output of the classi�cation using DisplayImage.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 25, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

