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Abstract—Body sensor networks (BSNs) have provided the 
opportunity to monitor energy expenditure (EE) in daily life 
and with that information help reduce sedentary behavior and 
ultimately improve human health. Current approaches for EE 
estimation using BSNs require tedious annotation of activity 
types and multiple body sensor nodes during data collection 
and high accuracy activity classifiers during post processing. 
These drawbacks impede deploying this technology in daily life 
-- the primary motivation of using BSNs to monitor EE. 

With the goal of achieving the highest EE estimation 
accuracy with the least invasiveness and data collection effort, 
this paper presents an unsupervised, single-node solution for 
data collection and activity clustering. Motivated by a previous 
finding that clusters of similar activities tend to have similar 
regression models for estimating EE, we apply unsupervised 
clustering to implicitly group activities with homogeneous 
features and generate specific regression models for each 
activity cluster without requiring manual annotation. The 
framework therefore does not require specific activity 
classification, hence eliminating activity type labels. With 
leave-one-subject-out cross-validation across 10 subjects, an 
RMSE of 0.96 kcal/min was achieved, which is comparable to 
the activity-specific model and improves upon a single 
regression model. 
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I.  INTRODUCTION 
Reduced energy expenditure (EE) in sedentary lifestyle 

has been linked to the dramatic rise in obesity, Type II 
diabetes, and heart disease [1] in modern society. To study 
this epidemic and ultimately motivate expending more 
energy in daily life, accurately monitoring of EE for each 
individual is desired. However, current accurate EE 
assessment is still limited to expensive laboratory tools, 
which are often challenged by the ease of use, accessibility 
and portability [2] and therefore fail to meet the requirements 
for long-term, remote, personal EE monitoring. 

Inspired by the wearability and continuous monitoring 
capability of body sensor networks (BSNs), significant 
research effort has been expended on estimating EE via BSN 
data. Inertial BSNs with accelerometers and/or gyroscopes 
are usually adopted, because EE is mostly correlated with 
mechanic energy generated by human bodies, and inertial 
sensors can directly capture motion intensity and patterns 
that are correlated to mechanic energy. How to best 
transform such data to EE, however, remains an open 

question, as the complexity and versatility of human motion 
challenge the effectiveness of analytical approaches and limit 
effective solutions to machine learning-based methods. 

Most researchers have attempted to recognize specific 
activities accurately and assign Metabolic Equivalents 
(METs) derived from the compendium of activities to EE. 
These activity recognition approaches usually requires high 
classification accuracy to avoid diminishing accuracy of EE 
estimation with misclassification. Consequently, multiple 
inertial BSNs to capture motion intensity and motion 
patterns of multiple body segments and more specific 
annotations for activities during data collection are required 
for model training in machine learning. Moreover, the higher 
accuracy for detailed activity classification also implies more 
invasiveness and cumbersomeness by requiring more sensors 
worn on human body. These drawbacks further impede 
implementing this technology in daily life – the primary 
motivation of using BSNs for EE monitoring – limiting the 
current monitoring of EE to strictly controlled in-lab settings. 
In order for this method to work in daily life, an automatic 
approach for data collection without data annotation and with 
few body-worn sensors must be devised. 

This paper addresses the abovementioned issues by 
bypassing specific activity recognition entirely. With the 
goal of achieving the highest EE estimation accuracy with 
the least invasiveness and data collection effort, this paper 
presents an unsupervised, single-node solution for data 
collection and activity clustering. Motivated by a previous 
finding that clusters of similar activities tend to have similar 
regression models for estimating EE [12], we apply 
unsupervised clustering to implicitly group activities with 
homogeneous features and generate specific regression 
models for each activity cluster without requiring manual 
annotation. 

The rest of this paper is organized as follows. Section II 
reviews related work for standard tools in EE assessment in 
medicine and state of art activity recognition with inertial 
BSNs. Section III proposes the new framework for EE 
estimation, grouping data into homogeneous groups via 
unsupervised clustering before regression. Section IV details 
the experiment setup for data collection among 10 healthy 
subjects. Section V covers methodology adopted by the 
framework, elaborating the techniques for feature extraction, 
unsupervised clustering and regression for EE estimation. 
Section VI evaluates the results of using the model, 
compares with two prevailing methods, and discusses the 
advantage and limitations of this work. Section VII 



concludes and discusses the approach’s impact and potential 
for real-world implementation. 

II. RELATED WORK 

A. Standard Equipment in Medicine 
Three kinds of gold standard tools exist for EE 

assessment: doubly labeled water, calorimeter room and 
circulatory calorimeter [14].  Doubly labeled water requires 
drinking of hydrogen isotope labeled water and is by far the 
most accurate method for assessing EE. However, it only 
outputs the total energy expenditure after an extended 
experiment period (e.g. 2 weeks) and does not provide 
information about frequency and intensity of the energy 
expended during certain activities [14]. A calorimeter room 
computes the total heat genesis of an enclosed room. 
However, it confines the subjects in a closed room for up to a 
day and has a delay in response up to 30 minutes [17]. Both 
of these two methods are costly, requiring dedicated 
laboratories and experts for data collection and analysis, 
rendering the monitoring less accessible in the real world.  

The circulatory calorimeter takes a breath-by-breath 
record and computes minute-by-minute EE based on the 
amount of oxygen inspired and the amount of carbon dioxide 
expired using Weir’s equation [13]. However, in addition to 
its cumbersomeness to wear, it requires a tedious calibration 
procedure to reduce errors resulting from maintenance [14], 
including room airflow calibration, following a double 
calibration, first with ambient air and then with calibration 
gas values. A delay calibration also needs to be performed 
weekly to adjust for the lag time that occurs between the 
expiratory flow measurement and the gas analyzers. These 
drawbacks inevitably hamper the circulatory calorimeter 
from monitoring EE in the real world. 

B. Energy Expenditure with Accelerometers 
Because of the close correlations between movement and 

EE, researchers have been trying to predict EE using 
movement features. Accelerometer-based BSNs are 
commonly used to capture movement features because of 
their availability and portable nature. With machine learning 
algorithms, researchers have attempted to transform the 
sensor data obtained from accelerometers into EE estimates. 
Two approaches have been applied in general. One directly 
estimates EE from accelerometer features [5][6][15] with 
regression models. The other recognizes activity types based 
on a pre-defined set of activities with pattern recognition and 
machine learning techniques, and then applies different 
activity-specific methods to derive EE [7][8][9]. 

Since activity type is identified as an important variable 
to predict EE, much research has focused on transforming 
accelerometer data to activity types (e.g. sitting, standing, 
walking, running, cycling, etc.) with pattern recognition 
techniques [3] and assigning static METs to the activities 
with compendium tables [18]. Such methods usually require 
at least three sensors to capture whole body motion in order 
to classify activities more specifically, introducing 
encumbrance in the data collection and processing. Also, 
classifying more activity types means more tedious 

annotations during data collection, reducing the feasibility of 
real-world implementation. Meanwhile, high accuracy in 
detailed activity recognition does not guarantee accurate EE 
estimation, since assigning static MET values to a specific 
activity type could not capture EE changes within an activity 
that are performed at different intensity levels [18]. EE 
estimation via detailed activity recognition is in essence a 
compression of the information from continuous time series 
to discrete activities types. In this process, the rich 
information contained in acceleration data per each 
individual subject during different activities is lost in 
generalized activity types and static MET values. Lastly, 
although a single regression method spares the labor of 
activity annotation, without activity recognition 
accelerometer features only reflect the local motion of the 
body segment where the accelerometer is mounted, 
disguising actual the activity intensity level that should be 
evaluated by whole body motion, thus providing less 
accuracy. In order to reduce the number of inertial sensors 
required while capturing the intensity levels, more direct 
indicators of EE – such as physiological signals – are to be 
explored for estimation. 

Until recently, since the portable electrocardiography 
(ECG) sensors have become available, heart rate (HR) has 
been extracted from ECG sensor data to provide extra 
information for activity recognition. However, including 
such features in activity detection algorithms only improved 
the performance by 1-2% [9]. Nevertheless, the high 
correlation between HR and oxygen uptake can be explored 
[12] by involving HR as an important factor to predict EE 
via regression. One drawback of using only HR for 
regression though, is that the response delay in HR to 
physical activities often introduces prediction error for EE. 
For example, for a physically less fit subject, HR can remain 
high when he/she is at rest after a period of intense physical 
activities, leading to overestimation of EE since not as much 
energy is expended as a similar HR generated during 
exercising. Therefore, accelerometer features – which 
respond to motion change more promptly – must also be 
used as variables to estimate EE.  

C. Cluster Acitivity Types and Energy Expenditure 
[12] has explored the relation between physical activity 

patterns and EE and demonstrated that by applying different 
regression models for different clusters of activities, the 
estimation accuracy can be improved up to 20%. Without the 
hassle of classifying the motion signals to each specific 
activity, clustering them to six different levels is sufficient 
for the purpose of EE estimation. By incorporating the HR 
feature to differentiate different levels of EE, even without 
distinguishing the specific activities in each activity group, 
EE can still be estimated accurately. However, despite the 
efforts saved from annotating too specific activity types for 
classification [8], this approach still requires the annotation 
of a training set of the activity clusters. Nevertheless, results 
obtained when classifying clusters of activities [12] 
suggested that the activity groups are coarsely correlated 
with EE. In other words, there might be fundamental data 
structure residing in these clusters that possess homogeneity. 



Therefore, we assume that clusters of activities represent 
similar data structures, and an automatic clustering solution 
grouping multi-attribute data into homogenous groups could 
lead to accurate EE estimation without specific activity 
recognition. 

III. FRAMEWORK 
In this section, we propose a framework for extracting 

features from data, clustering the data into homogeneous 
groups, and generating regression models for accurate EE 
estimation. The process does not require activity labeling in 
data collection, as activity recognition is not required, hence 
the framework can automate the data collection procedure in 
the real world. We will also show that this method can be 
successful with the use of a single body-worn sensor node. 

 
Figure 1.  Flow chart of proposed method 

Figure 1 illustrates the proposed framework as a flow 
chart. First the data is split into a training set and a testing set 
for leave-one-subject-out cross validation. Then Principal 
Components (PCs) are extracted from both the training set 
and testing set. The PCs of the training set are clustered via 
k-means clustering. The centroids of the clusters in the 
training set are used as starting points to cluster the testing 
set (also known as k-prototype method). For each cluster 
obtained in the training set, multiple linear regression models 
are generated using the circulatory calorimeter EE as output 
variables and the feature selected as input variables. Finally, 
to predict EE in the testing set, the models generated from 
training set are applied to each corresponding cluster in the 
testing set. The estimated EE and the ground truth EE of 
testing set data are compared in root mean square error 
(RMSE) for evaluation. 

IV. EXPERIMENTATION 
10 healthy subjects with desk jobs from diverse ethnic 

backgrounds were recruited and agreed to a pre-defined data 
collection protocol, including refraining from drinking 
(except water), eating and smoking two hours before data 
collection. The data collection protocol consists of a wide 
range of sedentary and physical activities, which are 
conducted in two separated days, respectively. The sedentary 
activities were: lying down, resting, sitting stretching, 
standing stretching, desk work, reading, writing, working on 
a PC, watching TV, fidgeting legs, standing still, standing 
preparing a salad, washing dishes, stacking groceries, 
folding clothes, cleaning the table, washing windows, 
sweeping, vacuuming, walking self-paced, walking self-
paced carrying books (4.5 kg), climbing stairs up, climbing 
stairs down. Each sedentary and household activity was 

carried out for a period ranging from 4 to 12 minutes, with a 
1 or 2 minutes break between the activities. The data 
collection of physical activities were: walking at 3, 4, 5 and 
6 km/h on a treadmill, walking at 4 km/h carrying a weight 
(5% of the subject’s weight), walking at 3 km/h, 5 and 10% 
inclination, walking at 5 km/h, 5 and 10% inclination, cycle 
ergometer at 60 and 80 rpm, low, medium and high 
resistance levels, running at 7, 8, 9 and 10 km/h. Activities 
carried out at the gym were 4 minutes in duration, except for 
running, which lasted for 1 to 2 minutes. The total data 
collected aross10 subjects lasted about 20 hours.  

During the data collection, the subjects were 
instrumented with a 1.5Kg indirect calorimeter (Cosmed 
K4b2 [16], shown in Figure 2 (a)) for validation purpose, 
and a 20 grams sensor patch developed at imec Holst Center 
on the chest (shown in Figure 2 (b)), consisting of one tri-
axis accelerometer and an ECG sensor [4]. The integration of 
accelerometer and ECG sensor facilitates the fusion of the 
two types of sensor data in order to increase accuracy 
without introducing invasiveness (shown in Figure 2 (c)). 
 

 
                               (a)                                                (b) 

     
                                      (c) 

Figure 2.  (a) A subject is instrumented with circulatory calorimeter 
Cosmed K4b2 mask (b) A subject is instrumened with ECG+accelerometer 

patch (c) A close up of the ECG patch platform [4] 

The indirect calorimeter was calibrated according to the 
manufacturer instructions and sampled at 0.25Hz. The ECG 
is sampled at 256Hz, and the accelerometer is sampled at 
64Hz.  The ECG data and accelerometer data were 
synchronized every 10 seconds via a wireless 
communication protocol to the computer clock during data 
collection. Both ECG data and accelerometer data are stored 
in a flash card on the sensor patch to ensure data integrity. 
The indirect calorimeter data and the ECG patch data (i.e. 
ECG and accelerometer data) were manually synchronized 
with post processing. Activity types were still labeled 
manually with a stopwatch during data collection in order to 



reproduce the evaluation detailed in [12] for model 
comparison. All data processing was done in MATLAB®. 

V. ANALYSIS METHOD 
This section elaborates the methods used to implement 

the framework introduced in Section III, including feature 
extraction from raw calorimeter data, ECG sensor data, and 
accelerometer data, clustering the data with k-prototype 
method after dimension reduction via PCA, and feature 
selection and regression method for each cluster. 

A. Data Preparation and Feature Extraction 
1) EE: respiratory data are acquired from the Comsed 

K4b2, which records the breath-by-breath volume of 
comsumption of ! !  and production of !" ! . EE was 
calculated based on Weir’s equation [13]: 

!! = ! ! !! ! ! ! ! ! ! !11! ! !" ! !/1000                   (1) 
In equation (1),  𝑉! !  is the oxgen consumed in milliliter, 
! !" !  is the carbon dioxide produced in milliliter, and EE is 
the energy expended in kilo calories per minute (kcal/min). 
Missing data caused by noncontact moment of the face and 
the mask are first linear interpolated and then median 
filtered to remove the outliers in the EE data. 

2) ECG sensor data: As heart rate is correlated with 
oxygen uptake [12], HR is extracted from ECG sensor data. 
A high-pass filter with a cutoff frequency at 4Hz is applied 
to remove the motion artifact superimposed in the ECG 
sensor signal, shown in Figure 3. Then HR is extracted from 
ECG data by counting peaks over 15 second windows then 
multiplied by four to get heart beats per minute. 
Additionally, the lowest HR was extracted from the HR data 
during lying down activity, and used to extract the heart rate 
above rest (HRaR): 

𝐻𝑅𝑎𝑅 ! !" ! !"#$ ! !" !"#$%!                    (2) 
This feature captures better the relation of HR increment in 
response to physical activities and will be compared with 
HR feature in regression analysis.   

3) Activity Labels: Activity labels are assigned to each 
data point (consisted of data in a 4s window) based on the 
activity list taken by stopwatch during data collection. This 
data is only used for model evaluation purposes. 
 

 
Figure 3.  Removing motion artifacts from ECG signal using high-pass 
filter, the motion artifacts are superimposed in the orignial ECG signal 

B. Dimension Reduction 
Because 19 features in total are extracted from the 

accelerometer and ECG sensor node, dimension reduction 
was necessary to improve clustering performance. Since 
interpretability is not a concern for clustering, PCA 
transformation is selected for its effectiveness, and extracted 
PCs are used for clustering in the next step. Before extracting 
PC features, the accelerometer features are normalized to Z-
score: 

! !"#$%&'()* ! !
! ! ! !"#$

!!
                       (3) 

where ! represents a feature vector extracted from 
accelerometer data,!! !"#$  is the mean of the feature vector, 
and ! !  is the standard deviation of the feature vector . 

C. K-Prototype Clustering 
The K-means algorithm [24] aims to partition 

observations of multiple variables into k partitions based on 
the nearest mean. [11] has proven mathematically that k-
means algorithm is equivalent to PCA, which “projects to the 
subspace where the global solution of k-means clustering 
lies, and thus facilitates k-means clustering to find the near 
optimal solutions”. Therefore, clustering the PCs extracted 
from the original data set by the k-means algorithm can 
group data into homogeneous clusters for better regression 
models. To determine the number of clusters, k, a cross-
validation based on the sum of distance criterion of k-means 
algorithm is conducted and sets k to be three.  

The training set data is clustered by a classic k-means 
algorithm with initial centroids determined by iteration, the 
final centroids location and group index are saved as input 
for testing set clustering. To make sure the cluster in the 
training set has the similar structure as in the testing set, a 
variation of the k-means– k-prototype – is applied on the 
testing set data. After the training set is clustered, the 
centroids of the final clusters are recorded and used to 
initialize centroids of the testing set data. By using prototype 
of clusters (i.e. centroids) obtained from the training set, the 
testing set’s clusters can be confined in the boundaries of the 
corresponding training set’s clusters.  

D. Feature Selection and Regression 
Automatic feature selection algorithms were performed 

for choosing the predicting variables before building 
regression models. First, forward stepwise feature selection 
[23] was used to screen out the irrelevant features. Then a 
regularization technique — least absolute shrinkage and 
selection operator (LASSO) [22] — was used after stepwise 
feature selection to screen the selected features in order to 
avoid overfitting. The final feature set includes: HR (which 
captures physiological response to activities as it is directly 
related to respiration), variance and range of the absolute 
band-passed accelerometer data (which capture the intensity 
of body motion), zero crossing rate of z-axis accelerometer 
(which captures repetitive pattern of certain activities), and 
the weight of the subject to capture inter-subject differences 
on similar activities. 

Without losing accuracy, multiple linear regression was 
chosen over other regression schemes such as random forest 



[19], ensemble regression trees [20], multiple adaptive 
splines (MARS) [21], due to its simplicity for model 
interpretation and hardware implementation. 

VI. RESULTS AND DISCUSSION 
The results of estimated EE for 10 subjects after cross 

validation is compared with ground truth EE (i.e. the 
circulatory calorimeter data) and evaluated by RMSE. To 
further evaluate the performance of the proposed method, 
two additional models were used for comparison: a single 
multi-linear regression model and an activity recognition 
based-model. The single multi-linear regression model uses 
the same set of features as the proposed model, while the 
activity recognition-based model is adopted from [12], which 
only requires recognition of six groups of activities and is 
evaluated at the perfect recognition accuracy. The results are 
presented in the form of box plot, illustrating the range, 
mean, and distribution of the RMSE (Figures 4-6).  

Figure 4 presents the model comparison on data collected 
during both physical activities and sedentary activities, with 
the activity recognition model with ideal classification 
accuracy (i.e. assuming no misclassification). This ideal 
assumption provides the lower RMSE limit (0.84kcal/min) 
given the current setup. Although the real world 
implementation and misclassification decreases the final 
accuracy of EE estimation, the deterioration is slight, 
because the activities with similar EE being misclassified 
will not affect EE estimation much as found in [12]. Our 
proposed model achieves an RMSE of 0.96kcal/min, 
showing 12% improvement in estimation accuracy over the 
single regression model (RMSE of 1.09 kcal/min) and a 
lower accuracy compared to the activity specific model at the 
price of eliminating activity annotations.  

 
Figure 4.  Model comparison of all activities 

Because the range of EE of sedentary activities is 
naturally much lower than that of physical activities, the 
RMSE estimated for the former can be lower than the latter 
due to the lower range of EE. Also, monitoring EE of 
physical activities is more interesting than that of sedentary 
activities, since different sedentary activities do not vary in 
EE as much as different physical activities do and can be 
estimated as accurately by compendium tables as by using 
monitoring sensors. Given these issues, to fairly evaluate the 
models, sedentary activities and physical activities are 

separated based on the activity labels extracted from the 
annotations during data collection, as shown in Figures 5 and 
6. 

 
Figure 5.  Model comparison of sedentary activities 

 
Figure 6.  Model comparison of physical acitivities 

For the EE estimation of sedentary activities (shown in 
Figure 5), the proposed model provides similar accuracy as 
the single regression model, though both provide poorer 
accuracy than the activity recognition based model with ideal 
classification accuracy. However, when evaluating the 
physical activities, the significant advantage of the proposed 
model is shown in Figure 6, where the RMSE of the single 
regression model increases to 1.38 kcal/min, while the 
proposed model has a comparable accuracy to the activity 
recognition based model (again, assuming 100% recognition 
accuracy). Overall, Figures 5 and 6 show that the proposed 
model has an advantage of reducing regression error of EE 
estimation in activities with larger variance (e.g. physical 
activities) by clustering the activities with similar sensor data 
characteristics. 

Although the proposed method shows promising real-
world implementation potential with the capability of 
automating data collection for accurate EE monitoring due to 
lack of a specific activity recognition step, it does not 
provide the knowledge of the relationships between activity 
types and EE. This can prevent the proposed method from 
further motivating the higher EE activities in sedentary life 
style via quantifying activity-dependent energy expenditure. 
We regard activity recognition as a parallel problem instead 
of a necessary intermediate step for accurate EE estimation. 
In other words, activity annotation, based on which activity 
types can be inferred, is only necessary for the purpose of 
studying the types. 



VII. CONCLUSION 
This paper explores the possibility of accurately 

estimating EE using a single body sensor patch (combining 
an ECG sensor and an accelerometer) with an activity 
recognition free approach. Driven by the goal of estimating 
EE more accurately without involving activity recognition in 
order to simplify the data collection procedure, a framework 
of combining unsupervised clustering and regression 
algorithms was designed for EE estimation. The 
ECG/accelerometer body sensor patch was used to collect 
data on 10 subjects during physical activities and sedentary 
activities, with circulatory calorimeter recorded EE 
providing the ground truth. Validated by leave-one-subject-
out cross validation, an RMSE of 0.96 kcal/min was 
achieved using the proposed model, comparable to the 
activity specific model (wither perfect activity classification 
accuracy) and improving upon the single regression model 
by 12%. Overall, despite lacking specific activity type 
information, the proposed model shows the potential for 
implementing accurate EE monitoring in the real world with 
portable, automated data collection. 

In the future, other unsupervised clustering algorithms 
will be investigated to improve grouping of heterogeneous 
data sets and the final accuracy of EE estimation. 
Interpretation of clusters after unsupervised clustering will 
also be studied to find the relationship between clustered 
activity types and EE. With a simple rule based classification 
algorithm, sedentary activities and physical activities can be 
separated in real-time, enabling the monitoring of only 
physical activities in order to save battery life. Finally, the 
multiple linear regression models will be implemented and 
tested in real-time, demonstrating the possibility of EE 
monitoring in real world.  
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