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Abstract

In this paper we present a garment prototype using strain
sensors to recognize upper body postures. A novel ther-
moplastic elastomer strain sensor was used for measuring
strain in the clothing. This sensor has a linear resistance
response to strain, a small hysteresis and can be fully inte-
grated into textile.

A study was conducted with eight participants wearing
the garment and performing a total of 27 upper body pos-
tures. A Nä�ve Bayes classi�cation was applied to identify
the different postures. Nearly a complete recognition rate of
97% was achieved when the classi�cation was adapted to
the individual participant. A classi�cation rate of 84% was
achieved for an all-user classi�cation and 65% for an inde-
pendent user. These results show the feasibility to recognize
postures with our setup, even in an unseen user setting.

Furthermore, we used the garment prototype in a gym
experiment to explore its potential for rehabilitation and �t-
ness training. Intensity, speed and number of repetitions
could be obtained from the garment sensor data.

1. Introduction

Clothing is an ideal platform for ubiquitous sensing of
user activities with vast applications in sports and person-
alized health care. Leveraging the full potential of textiles
has tremendous advantages with respect to space available,
comfortability to the wearer and freedom in number and po-
sitioning of sensors. Measuring body postures with textile
sensing systems fully utilize those advantages.

Classical posture measurement was limited to perma-
nently equipped rooms because these systems were �xed
installations. In recent time, however, many new systems
emerged which are portable and can be worn anywhere and
anytime. This opens new applications: textile posture and

movement sensing can be utilized in �tness training and re-
habilitation, e.g. measuring quality and quantity of exercise
conduction, as investigated in this work. Another applica-
tion of portable posture sensing systems is personal preven-
tion, e.g. reporting unfavorable back positions during of�ce
work.

In this paper we will present a portable posture measure-
ment setup with textile integrated strain sensors. These sen-
sors measure the strain in a tight-�tting garment caused by
body movements. We constructed a prototype of the system
and tested it in two experiments. We �rst performed a study
with eight participants conducting 27 postures. In a further
experiment, the system was evaluated in a real environment
by looking at typical activities in a gym.

After discussing related works in this section, Section 2
is focused on the prototype setup. In particular, the tex-
tile strain sensor is analyzed followed by the placement and
attachment of the strain sensors to the garment prototype.
In Section 3 the posture classi�cation study and results are
presented. The gym experiment and analysis is detailed in
Section 4. Finally, we conclude with a discussion of the
results achieved in this work and give a short outlook.

1.1. Related work

Portable systems for posture measurement are based on
different kind of sensors. Hansson et al. [7] usedac-
celerometersto measure joint angles. In [15] and [9] the
accelerometers were attached to the pants to detect activ-
ities like sitting, standing, walking and lying. Toney [14]
used conventionalpressure sensorsto measure �nger joint
angles. Dunne et al. [3] measured shoulder and neck move-
ments with a textile piezo-resistive pressure sensor. In [8] a
glove was realized usingpiezoelectric �lm sensors. Fiber-
optics sensorswere used in a pressure suit [2] and to mea-
sure the seated spinal posture [4]. A commercially available
system measuring the posture of the spine is based onultra-



sounddistance measurements [1]. Measuring upper limb
movements withstrain gaugeswas published in [5] by us-
ing knit strain sensors and in [13] by using a conductive
elastomer. In [6] a textile potential divider was built to mea-
sure strain caused by joint movements.

Our approach is similar to the one of Tognetti et al. [13].
We also use a tight-�tting clothing and strain sensors to
measure body postures. However, while the above cited pa-
per is focused on upper limb postures, we concentrate on the
torso and are able to distinguish between at least 27 different
postures (15 sitting and 12 standing postures), covering the
whole range of upper body postures. Farringdon et al. con-
centrate in [5] on the textile integration of their knit strain
sensor but do not give any measurement results. The �ber-
optic approach of Dunne et al. [4] focuses on measuring the
seated spinal posture and is limited to bending back pos-
tures (one degree of freedom).

2. Garment prototype

A prototype was built (see Fig. 1) with strain sensors at-
tached to the back region of a tight-�tting clothing. These
sensors measure strain in the garment caused by different
body movements and enable to distinguish between a pre-
de�ned set of body postures. We used a sensor thread with
an elastic range of 100%. More information on the sen-
sor and its �xation to the textile is given in Section 2.1. In
Section 2.2 the positioning of the sensors is described. The
garment that we used for our prototype was a commercially
available catsuit with a front zipper (medium-sized).

textile stretch
sensors

interconnections
to data acquisition unit

central data
acquisition unit
(attached at the

front side)

Figure 1. Architecture overview of a proto-
type recognizing upper body postures using
strain sensors.

The sensors were connected to a small data acquisi-
tion unit, which digitized (four 8-channel MAX147, 12bit)
and transmitted the measured signal to a PC via Bluetooth
(MSP430F149, BlueNiceComIII). A graphical user inter-

face was implemented which visualized the measured strain
values and stored the data into a �le. An overview of the
setup is given in Fig. 1 [11].

2.1. Sensor characterization

A novel strain sensor was used which was developed
by EMPA, Switzerland [12]. The sensor thread consists
of a commercial thermoplastic elastomer (TPE) �lled with
50wt-% carbon black powder and changes resistivity with
length. It is �ber-shaped with a diameter of 0.3mm and
has, therefore, the potential to be fully integrated into tex-
tile. In this prototype setup, the sensor was attached with
a silicone �lm (see Fig. 2) which enables a measurement
range of 100% strain. The length of the sensor was chosen
to be 2cm.

In this paper, strain is de�ned as

strain =
l � l0

l0
� 100[%]; (1)

whereasl is the current length andl0 the initial length.

sensor thread

attachment to textile
with silicone film

electrical connections
(conductive epoxy CW2400)

2cm

Figure 2. Sensor thread attached to the textile
with a silicone �lm.
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Figure 3. Typical response of sensor to a
given strain (sensor length 2cm).

Several measurements were performed in order to char-
acterize the sensor. For these measurements a strain tester
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sensor characteristics while stretching to 50%
sensor characteristics 5 days later
sensor characteristics 19 days later

working range

textile deformation
caused by 50% strain

linear approximation

Figure 4. Repeated measurements after 5 and
19 days (sensor length 2cm, measurement
speed 200mm/min), con�rming the long-term
stability of the sensor.

was used and the resistance was measured in parallel. Typi-
cal measurements were done at a speed of 200mm/min and
waiting times at maximal and minimal strain of 3-4sec.

In Fig. 3 a typical resistance vs. time plot is shown. It is
apparent that this sensor has a remarkably small overshoot
and relaxation time for a textile sensor. A typical resistance
vs. strain plot is shown in Fig. 4, indicating a linear rise in
resistance when applying strain and only a small hystere-
sis leading to errors of� 2% in strain when using a linear
approximation. Commercially available strain gauges reach
a higher linearity but at a very reduced working range of
less than 1%. Our sensor thread has a resistance of approx-
imately700
 =cm and a high sensitivity1 of 2k
 =mm at a
sensor length of 2cm, enabling a direct measurement of the
elongation.
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100mm/min
50mm/min

linear approximation

Figure 5. Sensor characteristics at dif-
ferent measurement speeds (50mm/min,
100mm/min, 200mm/min, 400mm/min and
600mm/min, sensor length 2cm), covering a
typical motion speed range of the back.

1sensitivity = �R
�l

The plateau at lower strains in Fig. 4 is caused by a tem-
porary deformation of the textile caused by the large strain
applied. This is not a problem for our application as the gar-
ment is pre-stretched when worn and we, therefore, use the
sensor in the working range only.

To show the stability of the sensor signal, the measure-
ments were repeated after 5 and 19 days. During this
time, no drift in the sensor signal was found (see Fig. 4).
Increasing the strain velocity (50mm/min, 100mm/min,
200mm/min, 400mm/min and 600mm/min) has shown a
marginal rise in resistance. The error increased from� 2%
to � 3:5% when doing a linear approximation over all �ve
measured speeds (see Fig. 5).

To summarize, the textile strain sensor has the following
properties which qualify the sensor for precise strain pattern
measurement in a garment:

� small hysteresis,
� linear resistance vs. strain characteristic over a work-

ing range of 100% strain,
� minor dependence on the strain velocity resulting in a

total error of� 3:5%,
� stable sensor properties,
� a high sensitivity of2k
 =mm (sensor length 2cm),
� thread-like shape.

2.2. Sensor placement

The sensor placement was based on reference strain mea-
surements done with an optical motion tracking system
[10]. Markers were attached to the back region of a tight-
�tting clothing and their spatial position was measured with
�ve infrared cameras. By analyzing the distance between
the markers, the strain in the clothing could be measured.
We performed reference measurements of 12 different pos-
tures which served as a basis for the sensor placement. In
Fig. 6 an example strain pattern is shown for bending for-
ward.

Figure 6. Example strain pattern for bending
forward using the reference strain measure-
ment method; middle: strain in horizontal di-
rection; right: strain in vertical direction [10].

When placing the strain sensors on the prototype, our
goal was to get a maximal possible coverage of a pre-
de�ned set of upper torso postures. Hence, we placed sen-
sors on every distinctive position, although, some sensors



might give redundant information. In Section 3.3 we will
show that there is potential to reduce and optimize the num-
ber of sensors.

Using the method described above, 21 sensors were
placed on the back of a catsuit (see Fig. 7, left).

1
2

3

6
4

5

9

13
15

87

11

14
20

10

12

21

1916
17 18

vertical:
bending sidewards/

lifting shoulders
diagonal:

rotating torso

bending
forward/ torso

rotations

arm
movements

shoulder
movements

Figure 7. Left: Placement of 21 strain sen-
sors. Right: Regions of elongation for char-
acteristic movements.

As a generalization, the following correlations between
movements and elongation in the garment can be given. Ad-
ditionally, the numbers of the sensors placed to measure
each movement are listed (see Fig. 7).

� The region in the upper back is stretched in horizontal
direction when the shoulders are moved forward.
) Sensors 1, 2, 3

� Arm movements cause mainly elongations in the
armpit region.) Sensors 4, 5, 7, 8, 10

� Bending forward causes elongations in vertical direc-
tion, mainly in the lower back region.
) Sensors 6, 12, 16, 19, 21

� Rotations of the torso can be measured in diagonal
direction on the back and the side of the torso.
) Sensors 13, 14, 17, 18

� On the side of the torso, we are able to measure bend-
ing sidewards and lifting the shoulders when measur-
ing in vertical direction.) Sensors 9, 11, 15, 20

3. Classi�cation of body postures

To evaluate the prototype we conducted a study in which
the strain sensor readings were used to classify a selection
of 27 body postures. A simple classi�cation algorithm was
used in combination with a thorough analysis procedure to
verify the feasibility of our approach. The following sec-
tions present the experimental protocol and summarize the
classi�cation method and results.

3.1. Experimental procedure

A set of frequently used body postures covering the de-
grees of freedom in trunk and arm movement were de�ned.
This initial set was adapted to cover both sitting and stand-
ing postures resulting in a �nal set of 15 sitting and 12
standing posture classes. Tab. 1 shows and summarizes the
�nal posture set that was considered in the study. An ad-
ditional base posture was de�ned as standing upright with
relaxed arms along the body axis. This posture was used for
a very basic adaptation of the prototype to the user.

Eight male participants aged between 26 and 31 years
were included in the study. The mean body height was
179 cm, standard deviation (SD) 4.1 cm. The mean chest
circumference was 95 cm (SD 4 cm) and the waist circum-
ference was 84 cm (SD 4.1 cm).

Participants were instructed to assume the different pos-
tures for approx. two seconds in a prede�ned sequence
while wearing the garment prototype. A picture was shown
to the participants to indicate each posture, however, pos-
tures were not explained or trained beforehand. Each pos-
ture was repeated three times and the whole set of postures
was recorded twice, so that each posture was recorded six
times in total (repetitions 1 to 3 and 4 to 6 are referenced
as set 1 and 2 respectively). The complete data set included
1296 postures from the 27 posture classes and eight partici-
pants.

The strain sensor values were acquired using a central
data acquisition unit attached at the waist level (see Sec-
tion 2), recording at a sampling rate of 33.5 Hz. An observer
annotated the postures during the recordings. The record-
ings and annotation were reviewed in a post-processing
step.

3.2. Classi�cation methodology

The strain data of all 21 garment sensors was used as fea-
ture set for the posture classi�cations. In a pre-processing
step, the strain was normalized by subtracting the mean sen-
sor value of the base posture from each participant's data
set. This method compensates for the variable body com-
positions and hence a variable strain in the garment among
the different participants.

Different classi�cation strategies were analyzed in order
to describe the in�uence of user-dependent training on the
discrimination of the different postures. The degree of user-
dependent training was evaluated by using auser-speci�c
training of the classi�er, a training and testing that included
observations fromall usersand a subject-wise leave-one-
out split that evaluated the classi�cation performance for a
new userof the system.

All classi�cations were performed on every sample of
the data with a Nä�ve Bayes classi�er using a 5-fold cross-



Table 1. Sitting and standing upper body pos-
tures included in the study. The postures are
visualized at the top of this page.

Base Posture Class
Standing upright - arms relaxed

Sitting Postures Class

Rotation of trunk
1 to the right
2 to the left

Bending trunk sidewards
3 to the right
4 to the left

Lifting shoulders
5 right shoulder
6 left shoulder
7 both shoulders

Slumped 8 shoulders over hip

Bending trunk forward
9 with bent back
10 with straight back
11 bending maxi-

mally, hands beside
the feet

Forced upright 12

Arm postures
13 arms to the front
14 arms to the sides
15 arms overhead

Standing Postures Class

Rotation of trunk
16 to the right
17 to the left

Bending trunk sidewards
18 to the right
19 to the left

Lifting both shoulders 20
Slumped 21
Bending trunk maxi-
mally forward

22 hands approaching
toes

Forced upright 23
Extending arms to the
front

24

Squatted 25 maintaining
straight back

Flexing torso sidewards
26 to the left
27 to the right

validation procedure to split training and testing observa-
tions for the user-speci�c and all-users evaluations. The
splitting procedure was designed to use each observation
only once for testing. For the new-user evaluation the data
was sliced according to the number of study participants
into eight iterations. For each iteration the data from seven
of eight participants was used for training and the left out
data set for testing.

The class skew due to varying posture lengths was com-
pensated by using an equal number of training samples for
all classes. To compare classi�cation results with unequal
number of test observations in each class, a normalized ac-
curacy measure was used. The total result of a multi-class
classi�cation was derived as mean of the class-relative ac-
curacies (normalized accuracy):

nAccT otal =
1
C

CX

i =1

Recognizedi
Relevanti

(2)

whereC is the total number of classes,Recognizedi and
Relevanti are the number of correctly identi�ed and the
total number of observations in classi respectively.

3.3. Classi�cation results

In the user-speci�c classi�cation an accuracy of 0.97 was
achieved with minor confusions of the classes 10 (bending
forward) and 25 (squatted) only.

We analyzed the in�uence of training-testing partitioning
by reducing the number of cross-validations from 5 to 2 and
consequently, reducing the number of training observations
from 80% to 50%. The accuracy dropped to 0.8. From this
result we concluded that differences exist between the two
consecutive posture recording sets (repetitions 1 to 3 com-
pared to repetitions 4 to 6) but only minor variability within
each set. Possible reasons for this result are 1) accurate rep-
etition of the postures within each set but slightly different
postures between the sets, 2) not enough variance in each
set since three repetitions were performed only, 3) sensor
inaccuracies and 4) movements of the clothing in compari-
son to the skin.

Figs. 8 and 9 show the all-user and the new-user classi�-
cation results respectively (actual class in rows, predicted
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Figure 8. Confusion matrix of the all-user
classi�cation of 27 postures.
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Figure 9. Confusion matrix of the new-user
classi�cation of 27 postures.

class in columns). The plot is obtained from the confu-
sion histogram matrix by normalizing each row by the row
sum (number of relevant observations for the corresponding
class). While the all-user analysis achieved a performance
of 0.84, the performance dropped for the new-user evalu-
ation to 0.65. A summary of these classi�cation results is
shown in Fig. 10, including the minimal and maximal re-
sults achieved.

The matrix plots in Figs. 8 and 9 show that certain simi-
lar postures could not be discriminated. Two types of error
were evident: 1) Confusions appeared between the corre-
sponding sitting and standing postures, e.g. postures 13
and 24 (extending the arms to the front while sitting and
standing). 2) Similar postures could not be differentiated
like e.g. postures 10, 11 and 25 (bending the trunk forward
with a bent and a straight back and squatted). Therefore,
the same analysis was repeated for the sitting postures only
(postures 1 to 15). The results increased from 65% to 74%
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Figure 10. Summary of the classi�cation per-
formances.

for the new-user classi�cation. Hence, we conclude that a
posture classi�cation is feasible for many classes even for
new-users, however, sitting and standing can hardly be dis-
tinguished with the current setup.

To show the potential to optimize the number of sensors,
a user-speci�c classi�cation was performed using 14 empir-
ically chosen sensors (sensor numbers 1, 3, 5, 7, 9, 11, 12,
15-21 in Fig. 7). The result dropped only minimally from
97% to 96%. Therefore, in a next step we will optimize the
number of sensors using for example a Mutual Information
approach.

4. Gym application

4.1. Experiment

In order to show the feasibility of the strain sensitive gar-
ment in a real world application, a gym experiment was per-
formed with one person. Another goal was to demonstrate
the step from classifying static postures to the recognition
of postures during a movement. We performed measure-
ments on the ”Rotary Torso”, the ”Total Abdominal” and
the ”Lower Back” machines varying speed and intensity
(range) of the movements. In the following, we will focus
on the Rotary Torso machine (see Fig. 11). The results of
the two other machines were similar.

Figure 11. Evaluating the strain sensitive gar-
ment in a gym application. Left: Rotary Torso
Start Position; Right: Rotary Torso End Posi-
tion.



In force training, slow and controlled movements are
very important for a balanced training of all muscle groups.
If the movement is done too fast (using a momentary im-
pulse), only muscles which are active at the starting position
are trained. This makes the training less effective. Another
important factor for an intensive training is the usage of the
whole movement range so that again as many muscles as
possible are trained. With this background information, we
measured the following training sequences on the Rotary
Torso machine:

� Movement 1: Optimal execution of the exercise with
a starting position maximally rotated to the left (see
Fig. 11, left) and an end position maximally rotated
to the right (see Fig. 11, right). Starting and end
position are numbered 1 and 5 respectively for later
classi�cation (see Fig. 12).

� Movement 2: Different ranges of movement, starting
with a rotation between the starting posture and
posture 2 (see Fig. 12,� 45� to � 20� ) with equally
increasing steps to a movement between maximal
rotation in both directions (posture 1 to 5 and back to
1, � 45� to +45 � ). Therefore, 4 different movement
ranges were measured.

� Movement 3: Fast performance of the exercise over
the whole range of movement where the subject allows
his momentum to carry him through the motion.

Additionally, the 5 classes shown in Fig. 12 were recorded
separately to be used as training data.

1 Start position (~-45°)

5Endposition(~45°)

phi

3
(~

0°)

2
(~

-20°)

4
(~

20°)

Figure 12. Different ranges of movement on
the ”Rotary Torso” machine and its assigned
class numbers.

4.2. Results

A nearest class center algorithm was used for detection
of the exercise posture. The 5 postures shown in Fig. 12
were recorded separately and used as training data. For test-
ing, the continuous data of movements 1 to 3 was used. As
movement 1 is equivalent to the last repetition of movement
2, only results of movements 2 and 3 are shown.

The sensor signals of all 21 sensors were used for classi-
�cation of which 2 are shown exemplarily in Fig. 13, lower
plot. The results of the nearest class center classi�cation
are shown in the upper plot. In movement 2, the rotation

angle was gradually increased. This increase was classi-
�ed correctly in all 4 repetitions. In the subsequent repe-
titions (movement 3), maximal rotation was performed at
high speed. It can be seen that the algorithm classi�ed all
the repetitions correctly in the sense that the range of move-
ment was recognized correctly (class 1 through 5). From
the classi�cation result, it is even possible to recognize that
the �rst part of the movement was done faster than the sec-
ond one (going back to the initial position). Based on these
results, the speed of the movement, the repetition frequency
and the number of repetitions of the training sequence can
be calculated.
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movement 2: increasing rotation angle movement 3:
high speed

Figure 13. Classi�cation result (upper plot)
and 2 example sensors (classi�cation was
done with all sensors). First 4 repetitions
were performed at normal speed with in-
creasing rotation angle, followed by 4 fast
movements using a momentary impulse.

With these results we could show the suitability of the
sensorized garment of Fig. 1 to be used in practical appli-
cations, exemplarily for a gym exercise. However, this ap-
proach could also be used for other applications like e.g.
rowing or nordic walking. For the gym task (Rotary Torso)
we have shown that the following properties of exercising
can be detected:

� Intensity / optimality of training: We are able to
distinguish between 4 steps of intensity when the
system is trained on the user, so that we can detect
whether only part or the whole range of movement is
trained.

� Dynamics of movement:The speed of the movement
can be measured so that fast and unbalanced move-
ments can be recognized.

� Number of repetitions:The number of repetitions can
be recorded and stored as a workout diary.



5. Conclusion and outlook

In this paper a garment prototype to recognize at least 27
upper body postures from 21 strain sensors was presented.

We used a novel textile strain sensor that has a linear re-
sistance vs. strain characteristics and a negligible hysteresis.
The resulting measurement error was� 3:5% over a strain
range of up to 100%.

Using this sensor, a garment prototype was developed by
attaching the strain sensors with a silicone �lm in the back
region of a tight-�tting garment.

The concept of this setup was proved in a study with
eight participants performing 27 postures. Nearly a com-
plete recognition rate of 97% was achieved with a user-
speci�c training. This demonstrated the feasibility of our
design concept. A classi�cation rate of 84% was obtained
for an all-user classi�cation and 65% for the new user mode.
Hence a posture classi�cation is feasible even for an unseen
user setting. Two types of error were evident in these classi-
�cation modes: 1) Confusions appeared between the same
sitting and standing postures and 2) similar postures could
not be perfectly differentiated. For a reliable discrimination
of sitting from standing, additional information would be
required like e.g. strain sensors at the waist level or pants.

To our knowledge this is the �rst time that a garment
equipped only with sensor threads has achieved suf�cient
accuracy to recognize at least 27 upper body postures.

In the future we would like to further pursue the follow-
ing aspects of our research:

� In this paper we have shown the feasibility of reducing
the number of sensors by using a subset of the sensors
and achieving similar recognition rates. In a next step
we will optimize the number and positioning of the
sensors by analyzing their information value, using
for example a Mutual Information approach.

� So far, the sensor was attached to the textile with a
silicone �lm. In a next step, we will examine a full
integration into the textile.

� Using a simple linear approximation, the sensor thread
has an error of� 3:5%. By using a more advanced
model, a further reduction of this error is possible.

� A further goal is to proceed from static postures to
dynamic movement measurements.

� We have already shown the feasibility of identifying
exercise execution on a gym machine. Our measure-
ment concept can easily be transferred to other sports
applications like e.g. rowing or nordic walking. We
also plan to investigate new application domains like
e.g. rehabilitation, safety at work or back protection.
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